Intensity-resolved above-threshold ionization of xenon with short laser pulses

نویسندگان

  • N. A. Hart
  • J. Strohaber
  • G. Kaya
  • N. Kaya
  • A. A. Kolomenskii
  • H. A. Schuessler
چکیده

We present intensity-resolved above-threshold ionization (ATI) spectra of xenon using an intensity scanning and deconvolution technique. Experimental data were obtained with laser pulses of 58 fs and a central wavelength of 800 nm from a chirped-pulse amplifier. Applying a deconvolution algorithm, we obtained spectra that have higher contrast and are in excellent agreement with characteristic two and ten Up cutoff energies contrary to that found for raw data. The retrieved electron-ionization probability is consistent with the presence of a second electron from double ionization. This recovered ionization probability is confirmed with a calculation based on the Perelomov, Popov, and Terent’ev tunneling ionization model [Sov. Phys. JETP 23, 924 (1966)]. Thus, the measurements of the photoelectron yields and the developed deconvolution technique allowed retrieval of more accurate spectroscopic information from the ATI spectra and ionization probability features that usually are concealed by volume averaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry- and diffraction-independent ionization probabilities in intense laser fields: probing atomic ionization mechanisms with effective intensity matching

We report a novel experimental technique for the comparison of ionization processes in ultrafast laser pulses irrespective of pulse ellipticity. Multiple ionization of xenon by 50 fs 790 nm, linearly and circularly polarized laser pulses is observed over the intensity range 10 TW/cm to 10 PW/cm using Effective Intensity Matching (EIM), which is coupled with Intensity Selective Scanning (ISS) to...

متن کامل

Study of laser ablation using nano-second laser pulses

 In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model ...

متن کامل

Reaction microscope study of near-threshold photo double ionization of xenon using high harmonics

Photo double ionization of xenon in the vicinity of the threshold is investigated using high harmonics and a reaction microscope. Electron momentum and energy distributions, β-asymmetry parameters and momentum correlation are measured at 32.4 nm. The results agree with previous measurements where available. The advantages and limits of the method are discussed. (Some figures in this article are...

متن کامل

Coherent phase-matched VUV generation by field-controlled bound states

The generation of high-order harmonics1 and attosecond pulses2 at ultrahigh repetition rates (>1 MHz) promises to revolutionize ultrafast spectroscopy. Such vacuum ultraviolet (VUV) and soft X-ray sources could potentially be driven directly by plasmonic enhancement of laser pulses from a femtosecond oscillator3,4, but recent experiments suggest that the VUV signal is actually dominated by inco...

متن کامل

Channel-closing-induced resonances in the above-threshold ionization plateau

Multiphoton resonances with ponderomotively upshifted Rydberg states are believed to have dramatic effects on the plateau of high-order above-threshold ionization. For short pulses and intense laser fields, individual Rydberg states lose their physical significance. Under these conditions, on the basis of experimental and theoretical investigation of the dependence of the photoelectron spectra ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014